https://www.youtube.com/watch?v=vzShqT6Eer8&list=PLsri7w6p16vvQCo9pmuRNY_SYoOGB6bWM&index=4 ================================================================================ Case3: "not enough sample", variance of 2 populations is same subcase1: 2 populations have normal distribution shape or normal distribution-like shape population1 follows $$$N(\mu_A,\sigma_A^2)$$$ population2 follows $$$N(\mu_B,\sigma_B^2)$$$ $$$\sigma_A^2 = \sigma_B^2 = \sigma^2$$$ * Since $$$\sigma_A^2 = \sigma_B^2 = \sigma^2$$$ you will predict common variance $$$\sigma_A^2$$$ and will use it * But you don't know variance of 2 populations, so you will use variance of 2 samples $$$s_A^2 = s_B^2 = s^2$$$ * Above is called "pooled variance estimator" ================================================================================ "pooled variance estimator" "pooled variance estimator" is common variance of independent populations in unbiased estimator form "pooled variance estimator" is notated by $$$s_p^2$$$ $$$s_p^2 = \dfrac{\sum\limits_{i=1}^{N} (n_i-1)\times s_i^2}{\sum\limits_{i=1}^{N} (n_i-1)}$$$ $$$n_i$$$: number of sample from ith population ================================================================================ Let's apply $$$s_p^2$$$ for population A and B $$$s_p^2 = \dfrac{(n_A-1)\times s_A^2 + (n_B-1)\times s_B^2}{(n_A-1)+(n_B-1)} \\ = \dfrac{(n_A-1)\times s_A^2 + (n_B-1)\times s_B^2}{n_A+n_B-2}$$$ ================================================================================ Trusted region (lower bound and upper bound) Trusted region wrt $$$\mu_A- \mu_B$$$ by using $$$100(1-\alpha)\%$$$ 2 sided test : $$$\frac{\alpha}{2}$$$ $$$(\bar{x}_A-\bar{x}_B) - t_{(n_A+n_B -2,\frac{\alpha}{2})} \times s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}} \le \mu_A- \mu_B \le (\bar{x}_A-\bar{x}_B) + t_{(n_A+n_B -2,\frac{\alpha}{2})} \times s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}} $$$ ================================================================================ Let's establish hypothesis 2 sided test $$$H_0:\mu_A-\mu_B=0$$$ $$$H_1:\mu_A-\mu_B\ne 0$$$ left sided test $$$H_0:\mu_A-\mu_B=0$$$ $$$H_1:\mu_A-\mu_B\lt 0$$$ right sided test $$$H_0:\mu_A-\mu_B=0$$$ $$$H_1:\mu_A-\mu_B\gt 0$$$ test statistics $$$t_{n_A+n_B-2, \frac{\alpha}{2}} \\ = \dfrac{(\bar{x}_A-\bar{x}_B)-(\mu_A-\mu_B)}{s_p \times \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}}$$$ Since $$$H_0:\mu_A-\mu_B=0$$$ $$$= \dfrac{(\bar{x}_A-\bar{x}_B)}{s_p \times \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}}$$$ ================================================================================ Case4 "Not enough sample", "identical variance of 2 populations is not known" $$$\bar{x}_A-\bar{x}_B$$$ $$$E(\bar{x}_A-\bar{x}_B) \\ = E(\bar{x}_A)-E(\bar{x}_B) \\ = \mu_A - \mu_B$$$ $$$s^2(\bar{x}_A-\bar{x}_B) = s^2(\bar{x}_A) + s^2(\bar{x}_B) - 2Cov(\bar{x}_A-\bar{x}_B) \\ = \frac{s_{x_A}^2}{n_A} + \frac{s_{x_B}^2}{n_B}$$$ ================================================================================ Trusted region wrt $$$\mu_A-\mu_B$$$ by using $$$100(1-\alpha)\%$$$ $$$(\bar{x}_A-\bar{x}_B) - t_{(n_A+n_B-2,\frac{\alpha}{2})} \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}} \le \mu_A-\mu_B \le (\bar{x}_A-\bar{x}_B) + t_{(n_A+n_B-2,\frac{\alpha}{2})} \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}$$$ ================================================================================ Let's establish hypothesis 2 sided test $$$H_0:\mu_A-\mu_B=0$$$ $$$H_1:\mu_A-\mu_B\ne 0$$$ left sided test $$$H_0:\mu_A-\mu_B=0$$$ $$$H_1:\mu_A-\mu_B\lt 0$$$ right sided test $$$H_0:\mu_A-\mu_B=0$$$ $$$H_1:\mu_A-\mu_B\gt 0$$$ test statistics $$$t_{(n_A+n_B-2, \frac{\alpha}{2})} \\ = \dfrac{(\bar{x}_A-\bar{x}_B)-(\mu_A-\mu_B)}{\sqrt{\frac{1}{n_A} + \frac{1}{n_B}}}$$$ Since $$$H_0:\mu_A-\mu_B=0$$$ $$$= \dfrac{(\bar{x}_A-\bar{x}_B)}{\sqrt{\frac{1}{n_A} + \frac{1}{n_B}}}$$$