discrete random variablen | continuous random variable |
---|---|
PMF $P_{X}(x)=P(X=x)$ | PDF $f_{X}(x), P(X\in B)=\int_{B}f_{X}(x)dx$ |
CDF $F_{X}(k)=P(X\leq k)$ $F_{X}(k)=\sum\limits_{x\in k} P_{X}(x)$ |
CDF(in CRV, it's non-decreasing but can't be over 1) $F_{X}(x)=P(X\leq x)=\int_{-infty}^{x}f_{X}(t)dt$ |
Mean $E[X]=\sum\limits_{x}P_{X}(x)$ $Var[X]=\sum(x-E[X])^{2}P_{X}(x)$ |
$E[X]=\int_{-\infty}^{\infty}xf(x)dx$ $Var[X]=\int_{-\infty}^{\infty}(x-E[X])^{2}dx$ |
independence $P_{X,Y}(x,y)=P_{X}(x)P_{Y}(y)$ |
$f_{X,Y}(x,y)=f_{X}(x)f_{Y}(y)$ |
conditional pmf $P_{X|Y}(x|y)=\frac{P_{X,Y}(x,y)}{P_{Y}(y)}$ |
conditional pdf $f_{X|Y}(x|y)=\frac{f_{X,Y}(x,y)}{f_{Y}(y)}$ |