================================================================================
Expectation value: average of random variable
================================================================================
Sample data's average: $$$\bar{x}$$$
Sample data's variance: $$$s^2$$$
which are not "population's characteristics"
but they're prediction for characteristics of population.
Population's average: $$$\mu$$$
Population's variance: $$$\sigma^2$$$
================================================================================
$$$\bar{x} \\
=\frac{1}{n}\sum\limits_{i=1}^n x_i \\
=\frac{1}{n}\sum\limits_{\text{all x}} n_x x \\
=\sum\limits_{\text{all x}} x \frac{n_x}{x}$$$
$$$\frac{n_x}{n}$$$ is relative frequency
================================================================================
$$$E[X]=\mu=\sum\limits_{\text{all x}} xp(x)$$$
Best proper value you can expect from random variable X
================================================================================
In the case of where you use continuous random variable
$$$E[X]=\mu=\int_{-\infty}^{\infty} xf_x(x)dx$$$
================================================================================
Variance of discrete random variable
* Variance of sample
$$$s^2 \\
= \frac{1}{n-1} \sum\limits_{i=1}^n (x_i-\bar{x})^2 \\
= \sum\limits_{\text{all x}} (x-\bar{x})^2 \frac{n_x}{n-1}$$$
* $$$\frac{n_x}{n-1}$$$: relative frequency
* Variance of population
$$$\sigma^2
= \sum\limits_{\text{all x}} (x-\mu)^2 p(x)$$$
================================================================================
Variance of continuous random variable
* Variance of sample
$$$Var[X] \\
= E[(X-E[X])^2] \\
= \int_{-\infty}^{\infty}(x-\mu)^2 f_X(x)dx$$$
* $$$\frac{n_x}{n-1}$$$: relative frequency
* Variance of population
$$$STD[X] = Var[X]^{\frac{1}{2}}$$$
================================================================================