================================================================================ Mean vector $$$E[X] \\ = [E[X_1], E[X_2], \cdots, E[X_N]]^T \\ = [\mu_1,\mu_2,\cdots,\mu_N]^T \\ = \pmb{\mu}$$$ * $$$E[X]$$$: Mean vector ================================================================================ Covariance matrix: (1) represents relationship between features of each dimention as covariance (off-diagonal regions) (2) represents variance of features in each dimenstion as variance (diagonal axis positions) ================================================================================ $$$COV[X] \\ = \Sigma \\ = E[(X-\mu)(X-\mu)^T] \\ = \begin{bmatrix} E[(x_1-\mu_1)(x_1-\mu_1)^T]&&\cdots&&E[(x_1-\mu_1)(x_N-\mu_N)^T]\\ \cdots&&\cdots&&\cdots\\ E[(x_N-\mu_N)(x_1-\mu_1)^T]&&\cdots&&E[(x_N-\mu_N)(x_N-\mu_N)^T]\\ \end{bmatrix} \\ = \begin{bmatrix} \sigma_1^2&&\cdots&&C_{IN}\\ \cdots&&\cdots&&\cdots\\ C_{IN}&&\cdots&&\sigma_{N}^2\\ \end{bmatrix}$$$ * $$$C_{IN}$$$: covariance between ith and Nth ================================================================================ Characteristics of covariance - $$$x_i$$$, $$$x_k$$$ increase together, covariance value $$$c_{ik}>0$$$ - $$$x_k$$$ increases, $$$x_i$$$ decreases, covariance value $$$c_{ik}\lt 0$$$ - $$$x_i$$$ and $$$x_k$$$ are uncorrelated, covariance value $$$c_{ik} = 0$$$ - $$$|c_{ik}| \lt \sigma_i\times \sigma_k$$$, $$$\sigma_i$$$ is std of $$$x_i$$$ - $$$c_{ii} = \sigma_i^2 = VAR(x_i)$$$ ================================================================================ * $$$\rho_{ik}$$$: correlation coefficient (1) $$$-1\le \rho_{ik}\le 1$$$ (2) $$$\rho_{ik}=-1$$$: highest negative correlation (2) $$$\rho_{ik}=1$$$: highest positive correlation * $$$c_{ik} = \rho_{ik} \sigma_i\sigma_k$$$ * $$$\rho_{ik}=\dfrac{c_{ik}}{\sigma_i\sigma_k}$$$ ================================================================================ * Each circle: each sample data ================================================================================ (1) $$$X_1$$$ decreases and $$$X_k$$$ increases * $$$c_{ik}=-\sigma_i \sigma_k$$$ * $$$\rho_{ik}=-1$$$ (2) $$$X_1$$$ decreases and $$$X_k$$$ increases * $$$c_{ik}=-\frac{1}{2} \sigma_i \sigma_k$$$ * $$$\rho_{ik}=-\frac{1}{2}$$$ (3) $$$X_1$$$ and $$$X_k$$$ are uncorrelated * $$$c_{ik}=0$$$ * $$$\rho_{ik}=0$$$