This is note I wrote as I was take following lecture
http://www.kocw.net/home/search/kemView.do?kemId=1189957
================================================================================
Multivariate Gaussian probability density function
$$$f_X(X)=\dfrac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}}
\exp \left[ -\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu) \right]$$$
Input X: n dimensional feature vector, $$$X \in \mathbb{R}^n$$$
probability density of feature vector is Gaussian shape
$$$|\Sigma|$$$: determinant of covariance matrix
================================================================================
Suppose it's Gaussian probability density function,
and criterions when you classify are ML, MAP, Bayes criterion
================================================================================
MAP (maximum a posteriori) decision function is
$$$g_i(x) \\ = P(\omega_i|x) \\ = \dfrac{P(x|\omega_i)P(\omega_i)}{P(x)} \\ = \frac{1}{(2\pi)^{n/2} |\Sigma_i|^{1/2}} \exp \left -\frac{1}{2} (X-\mu_i)^T \Sigma_i^{-1}(X-\mu_i) \right P(\omega_i) \frac{1}{P(x)}$$$
Goal: you find posterior probability
$$$\text{posterior probability } = P(\omega_i|x)$$$,
when x is given, probability of class $$$\omega_i$$$ occurring
$$$g_i(x)$$$: decision function
$$$\dfrac{P(x|\omega_i)P(\omega_i)}{P(x)}$$$: you get this
by using Bayes rule on posterior probability $$$P(\omega_i|x)$$$
$$$P(\omega_i)$$$: prior probability
$$$P(x|\omega_i)$$$: likelihood= probability density function of given random variable
So, you put $$$f_X(X)=\dfrac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \text{exp} \left[ -\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu) \right]$$$
into $$$P(x|\omega_i)$$$
================================================================================
You remove constant terms ($$$P(x), 2\pi$$$)
$$$g_i(x)= |\Sigma_i|^{-1/2} \exp\left[ -\frac{1}{2} (x-\mu_i)^T \Sigma_i^{-1}(x-\mu_i) \right] P(\omega_i) \frac{1}{P(x)}$$$
================================================================================
You use natural log to use $$$\log{(ABC)}=\log{A}+\log{B}+\log{C}$$$
$$$g_i(x)=-\frac{1}{2} (x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i) -
\frac{1}{2}\log{(|\Sigma_i|)}+\log{P(\omega_i)}$$$
7