001-002. reason we use python, pandas, pivot_table(), dataframe.plot("title") # @ # %matplotlib inline import pandas as pd # Load NationalNames.csv file with designating header name names=pd.read_csv("/media/young/5e7be152-8ed5-483d-a8e8-b3fecfa221dc/NationalNames.csv", header=0,names=["id","name","year","sex","births"]) names.head() # id name year sex births # 0 1 Mary 1880 F 7065 # 1 2 Anna 1880 F 2604 # 2 3 Emma 1880 F 2003 # 3 4 Elizabeth 1880 F 1939 # 4 5 Minnie 1880 F 1746 names.count() # id 1825433 # name 1825433 # year 1825433 # sex 1825433 # births 1825433 total_births=names.pivot_table("births",index="year",columns="sex",aggfunc=sum) total_births.head(10) # sex F M # year # 1880 90993 110491 # 1881 91954 100745 # 1882 107850 113688 # 1883 112321 104629 # 1884 129022 114445 # 1885 133055 107800 # 1886 144535 110784 # 1887 145982 101414 # 1888 178627 120853 # 1889 178366 110584 # total_births is dataframe total_births.plot(title="Total births by sex and year") # img bc18ad77-eb2e-4ccb-bf7f-1e1d475aafbf