006-lec-001. multinomial classification(multiple classes like A,B,C) # @ # Multinomial classification: label is over 2 like A,B,C # $$$x_{1}$$$(hour) $$$x_{2}$$$(attendance) y(grade) # 10 5 A # 9 5 A # 3 2 B # 2 4 B # 11 1 C # img 4f189664-2ca0-3d6d-8646-bb176b7ed5c4 # XW=H(X) # This is for classifier A $$$\begin{bmatrix} w_{A1} & w_{A2} & w_{A3} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} w_{A1}x_{1} + w_{A2}x_{2} + w_{A3}x_{3} \end{bmatrix}$$$ # This is for classifier B $$$\begin{bmatrix} w_{B1} & w_{B2} & w_{B3} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} w_{B1}x_{1} + w_{B2}x_{2} + w_{B3}x_{3} \end{bmatrix}$$$ # This is for classifier C $$$\begin{bmatrix} w_{C1} & w_{C2} & w_{C3} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} w_{C1}x_{1} + w_{C2}x_{2} + w_{C3}x_{3} \end{bmatrix}$$$ # You try to merge above classification $$$\begin{bmatrix} w_{A1} & w_{A2} & w_{A3} \\ w_{B1} & w_{B2} & w_{B3} \\ w_{C1} & w_{C2} & w_{C3} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} w_{A1}x_{1} + w_{A2}x_{2} + w_{A3}x_{3} \\ w_{B1}x_{1} + w_{B2}x_{2} + w_{B3}x_{3} \\ w_{C1}x_{1} + w_{C2}x_{2} + w_{C3}x_{3} \end{bmatrix}$$$ $$$\begin{bmatrix} w_{A1}x_{1} + w_{A2}x_{2} + w_{A3}x_{3} \\ w_{B1}x_{1} + w_{B2}x_{2} + w_{B3}x_{3} \\ w_{C1}x_{1} + w_{C2}x_{2} + w_{C3}x_{3} \end{bmatrix}=\begin{bmatrix} \hat{Y}_{A} \\ \hat{Y}_{B} \\ \hat{Y}_{C} \end{bmatrix}$$$ $$$\hat{Y}_{A}=H_{A}(X)=w_{A1}x_{1} + w_{A2}x_{2} + w_{A3}x_{3}$$$ $$$\hat{Y}_{B}=H_{B}(X)=w_{B1}x_{1} + w_{B2}x_{2} + w_{B3}x_{3}$$$ $$$\hat{Y}_{C}=H_{C}(X)=w_{C1}x_{1} + w_{C2}x_{2} + w_{C3}x_{3}$$$ # @ # multiple variable+one label # For example, I want to predict score of final exam from 3 scores # x1(quiz 1) x2(quiz 2) x3(midterm 1) Y(score of final exam) # 73 80 75 152 # 93 88 93 185 # 89 91 90 180 # 96 98 100 196 # 73 66 70 142 # Multinomial classification # x1(hour) x2(attendance) y(grade) # 10 5 A # 9 5 A # 3 2 B # 2 4 B # 11 1 C # You need 3 hypothesis functions # You make 3 hypothesis functions to predict # and then they create 3 values separately # You can choose hightest one